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1. Introduction

A tnangular matrix reveals its eigenvaluss along the main diagonal.
By Schur’s lemma any square complex matrix is unitarily similar to
an upper triangular matrix with the eigenvalues arranged in any
desired order along the main diagonal. It follows that any real square
matrix is othogonally similar to a real block upper triangular matrix
in which each 2x2 block on the diagonal corresponds to a pair of
complex conjugate eigenvalues. The Householder-QR algorithm is a
stable, efficient algorithm that praoduces a Schur form. However the
ordering of the eigenvalues that the QR algorithm produces may not
be suitable for certain purposes, such as computing the exponential of
the original matrix. There are programs in the library EISPACK that
compute this real Schur form. See section 2356 of [EIS,1976].

This investigation presents and compares all the attractive methods
we can think of for performing orthogonal similarity transformations
that preserve block triangular form but rearrange the eigenvalues.
This is a fairly straightforward task but it is always a challenge to
try and keep down.three conflicting costs: round off error, execution
time, and program length.

We give some attention to the task of swapping adjacent diagonal
blocks of orders p and q but our main concern is with the case p=q=2.
We use capital letters to denote matrices. Fortran programs are given
at the end.

Before plunging into details we describe the methods in brief general
terms. Algorithm 0 (G.W. Stewart): Swap adjacent blocks using one
or two QR steps with a pre-determined shift to force the ordering of
the eigenvalues of the new blocks. Algorithm 1. Swap adjacent
blocks as needed wusing an explicit orthogonal similarity
transformation. At most 4 rows and columns will be modified at
each swap. Algorithm 2: Swap adjacent blocks using Householder
transformations. For swapping a pair of 2x2 blocks two Householder
transformations are needed.

The table below compares the algorithms for code length and running
time. THe remainder of that paper is concerned with accuracy.




Algorithm  Fortran line Speed ratio (The ratio was

number count determined by runs on 9x9 matrices)
0 165 127
1 386 100
2 301 1.15
Table 1

We were encouraged to present our programs and results by Dr.
Sven Hammarling (of NAG, Inc, Oxford) who showed us work on
swapping that he had begun in cooperation with Dr. J. Dongarra
(Argonne National Laboratory) and the late Prof. J. H. Wilkinson.

2. The Software Economizer (EXCHNG)
Consider a submatrix of the form

AB]
1
0 A

where A; and A; are 2x2 diagonal blocks.

Algorithm 0 (called EXCHNG in [Ste. 1976]).

1. An implicit double shift is determined from A;.

2. An arbitrary QR step is performed to destroy the triangular
form and put the matrix into Hessenberg form.

3. A sequence of double QR steps using the shift from step 1. The
The eigenvalues of the first block will emerge in the lower
part of the array occupied by both blocks, usually in one or
two steps.

Remark 1. The alogrithm discards the information that there are
two pairs of conjugate complex eigenvalues. Stewart modifies the
standard QR program so that a supplied initial shift may overwrite
the usual Francis shift at the first step. Such an algorithm would
converge in one or two steps.




3. General Theory

Consider the block upper triangular matrix
A1 B ] A1 1s pxp,

0 A (1)
2

A2 is gxq.

Throughout this paper we assume that A1 and A; have no eigenvalue
in common. It follows that there exists a unique pxq matrix X such
that

AX-XA; =B (2)
This is called Sylvester's equation. It follows that
-x ] 1
Alb}-le.Alo .Ipr
0 Az 0 Iq‘ 0 AZJ 0 I,
) -X I . AZ 0 . 0 I, -
1,0 ‘ 0 A1. Ip X |

DEFINITION. An orthogonal (p+q)x(ptq) matrix H is said to swap A
and A, if

Helg™ A

A B Ay ~
A B
1 ]-HT =] 72 (4)
2

where A, is similar to A, i=1,2.

Lemma 1. An orthogonal (p*q)x(p*tq) matrix H swaps A; and A if,

and only if,

-x M

H- i = 21, (5)
q 0

for some invertible qxq M; where X is defined in (2).
Note that, since H is invertible,

M -X

rank| 2| = rank (= a
0 q

Consequently Mj is qxq and must be invertible.
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Proof. If H satisfies (5) then for some qxp W and pxp My,
g -X lp M2 W

1. 0 0 M

q 1

and, since both matrices on the left are invertible so are M; and M;

e T

’

Hl
M, W MMM
- -1 ’
0 Mi. 0 Ai 0 M1
A B
= 2 s
0 A
1)
where
1 i=1,2; B=(wWA; - A,W)M7!

A = Mp-ARMY
Conversely, if H swaps A; and A; then there exist M;, My, and W

such that
Ml -Mmtwm?
2 2 1

0 Mo
1

It faollows that

M W]
D = 02 M

1

Since Ay and A, have no eigenvalues in common D must be a

polynomial in diag{A;,A). See [Gant. vol. 1, p222].
~-X Ip M2 Y

H 1 o -D

2

AU‘
0 A
1

-X Ip
- H commutes with

IqU

a C|M1

must be block upper triangular. This establishes the converse.
QED




S

Lemma 2. An othogonal H that swaps A; and A; must have the
form

-1 T
cC" o0 -X 1
H= 2 -1 . q (5)
0 C I. X
1 p
where
cz-c: =1 +X°%,
i 1 . (7)
C-C =1 +XX .
1 P

Proof. Write CJ for M, multiply (5) by H' and use the orthogonality
of H to find
-X

I I
Transposing reveals the first row of H. The second row follows by

orthogaonality.

-X
= HT-H.

1
ba

‘QED

Remark 1. There are infinitely many choices for C; and C; that
satisfy (7). See Section 4.3 for more dstails.

Remark 2. One of our implementations uses the form in (6) explicitly.
The block rows are orthogonal by their form, so it is the accuracy
with which (7) is fulfilled that determines the orthogonality of the
computed H. An alternative implementation starts from (5) and
seeks H as a product of elementary reflectors (also known as
Houssholder matrices).

The key blocks of the transformed matrix can be found explicitly.
Using (3), (6), and (7) it is not difficult to see that

ACT A =cla.c .
2 1 1 1

¢ 2 1

A
2

N -

-3

B

- -
cla xX.¢c -ctxha-c . (®)
2 1 2 1 1

N




4. Implementation details

4.1. Standardized Real Schur Form

The Schur form of a matrix is not unique and the real Schur form of
a real matrix offers even more freedom. We urge the adoption of the
following conventions.

i) 2x2 diagonal blocks are used exclusively for complex
conjugate pairs of eigenvalues, not for distinct real
eigenvalues.

ii) The diagonal elements of 2x2 diagonal blocks are made equal.
This value is the real part of each eigenvalue.

Consequently we advocate the form

« P
l ] p¥<0.

¥ &«

The off diagonal elements of the 2x2 diagonal blocks cannot always be
made equal in absolute value but they must be opposite in sign. To
guarant uniqueness ane may require p and ¥ to satisfy 0 < ¥ < ~p,
but that is not essential. Note that the eigenvalues are «+./p-¥ .

The use of a standard real Schur form facilitates the swapping of
diagonal blocks as well as ensuring that the real parts of all
eigenvalues are held on the diagonal of the real Schur form.

If a given real Schur form does not have its eigenvalues ordered
appropriately down the diagonal then some swapping of diagonal
blocks will be needed. However the task is considerably simplified by
the fact that no block has order exceeding 2. Any configuration of
eigenvalues can be reached by swapping adjacent diagonal blocks and
this is the task we consider below.

Here is a method (cf section 45) to put 2x2 diagonal blocks into
standard form. Let

a2l a22

all ai2 ]

Define a reflection P by
~cos(9) sin(9) ] )

pT=p = -
sin(9) cos(8) 2

(e ar)

_




2

Write c=cos(8) and s=sin(8). It is not difficult to see that PAP
transforms A to a standard form:

ali+a22 a2i - c. ali-a22
PAP = 2 2 2 (9)
ai2 - c. 011'022 011*022 .
s 2 2

42. Solving A{X - XAz = B

Considerable attention has been paid to the general case of this
equation, now known as Sylvester's equation. See [B&5,1972] and
[G,N,&vL,1979]. When A; and A; are either 1x1 or standardized 2x2
matrices the solution can be given explicitly using stable farmulae.

In an earlier unpublished report [Pa,1977] we advocated scaling X,
1e., we solved

A;X - XAy = 8B
with 2z chosen so that |IXll=1. Further analysis shows that this
caution is unnecessary. There is no danger in working with X of large

norm provided that IIXI¢ does not overflow. Moreover if I[XIF does
overflow then the blocks should not be swapped because a tiny
pertubation will give the new A; and A; at least one common
eigenvalue.

Our algorithm for solving the Sylvester equation is called TXMXT (for
TX-XT) and is described in Appendix A, see also the program
Appendix C.

4.3. The Choleski Factor

If the explicit orthogonal H described in Section 3 is to be used then it
is necessary to solve the equations (7) for C; and C;. We can see no
reason to avoid the Choleski factorization. The formulae are given
below. When presenting the algorithm in detail we write xij for
%(1,j). Recall equation (7):

c-cl = 1 +X%-X .
2 q

I «+ XX .
p

- N

c-C
1




Algorithm 1.
An H is found explicitly in the form of (6) to swap A; and A,
The choice for C1 and C; in (7) are the Choleski factors.

Case 1. X is 1x1, then Cx(1,1) = Cy(1,1) = f1+x112.
Case 2. X is 1x2, then Cy(1,1) = /1+x11%+x12?, and

¥ 0
_ _ / 2
C2 =1 x11-x12 /1"(!&)2 '. ¥ = Viexil® |
¥ ¥

Case 3. X is 2x1, then Cy(1,1) = /1+x11%+x21%, and

Y 0
N
= | xt1x21 /1*(&)2]' V= Visxdls.
Y ¢

Case 4. X is 2x2, let § = x11:x22 - x12-x21, ¥ = /1+x11%+x122, and
K= /;x112+x212 ; we have

¥ 0
2 .. 2.2
C, = | x11:x21+x12x22 \[, x21°4x22°+8
¥ e |
and
K 0
2. 2.2
C, = | x11:x12+x21.x22 \/ {+ X1274x22748
X 2
K

4 4. Representing H as a product of two reflectors

The explicit form of H in Section 3 is not mandatory. W. Kahan
suggested using two reflections instead. Here are the details. First
some notation. A nxn reflection (or Householder matrix) can be

represented as I - uu’/d, where I is the nxn identity matrix, u is a
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n-vector, and d = %llull2. We use the fact that if uzx+y and lixii=liyll,
then (I-uu/(%lull?))-x=-y.

Algorithm 2.

An H is found implicitly in the forrn of either a reflector or a
product of two reflectors to swap A; and A;. The reflector(s) are
determined as follows:

Case 1. Xis 1x1. Let ax = sign(x11)- /1+x112 . We seek a reflection

H so that
l-xii -$X
H- =
1 0
The special form of H leads to
If x11/sx < 05, then ul = sx - x11; else ul = 1/(sx+x11)

u2 =1
d = ul-sx

Case 2. X is 1x2. Let sx = -sign(xiZ)-\/i*x112~r:>(122 . We observe
that if a reflector H satisfies

1 0
Hel x11 | = 0
x12 -8X

then it satisfies (5). The proof is left to the reader. The special form
of H leads to

uli =1

u2 = xi1

if -x12/sx s 05, then u3 = x12+sx; else u3 = (1+x112)/(sx-x12)
d = ul-sx

Case 3. X is 2x1. Let sx = sign(x11)./1+x11%+x212 . From (5) we
seek a reflection H so that

-x11 -8X
H-]-x21] = 0]
1 0
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The special form of H leads to
If x11/sx < 05, then ul = sx - x11; else ul = (1+x212)/(sx+x11)

u2 = -x21
ui=1
d = ul-sx

Case 4. X is 2x2. Two reflections H; and H; are required. In (5) let
M, be upper triangular and H = Hy'H;. First define

sx = sign(x) /1+x11%x212
We seek a reflection Hy = I - uul/d so that

-x11] ~sx |
-x21 0
H- =
1{ 1 0
0 | 0

From the special form of H we have
If x11/sx ¢ 05, then ul = sx - x11; else ul = (1+x212)/(sx+x11)

uZ = -x21
uj =1

ué = 0

d = ul-sx.

Next, define an intermediate vector y by
yl' -x12)]
v2 -x22

y = =H -
v3 1 0
y4) 1]

One can verify that
vl = ~(x11-x12+x21-x22)/sx,
y2 = -x22 - x21+(x12-ul - x21-x22)/d,
y3 = (x12-ul - x21-x22)/4,
yd = 1.

Note that y2 = -x22 - x21-y3. Let sy = -sign(y2): /1+y2%+y3°

We seek the second reflection Hy = I - wvvl/g so that




LR

y1] y1 |
y2 -8
H_- = i
2 ly3 0
v4 | 0
There is no need to change the top row. Proceed as before to obtain
vi=0
if -y2/sy ¢« 05, then v2 = sy + y2; else v2 = (1+93%)/(sy-y2)
v3 = y3
vd =1
g = Vvi-sy.

Remark. Since each H that swaps A; and Ay can be represented in
the form of (6) (lemma 2), it is worthwhile to see what the reflection,
or product of reflections, looks like in this form. In fact we make use
of it in Section 45. We compute the corresponding C; and C; in
appendix B. They are obtained by noting that

H- -:: = (;; and leX]-HT =l0 Cl]'

4 5. Special treatment for the diagonal blocks.

From (8) the new diagonal block A is equal to W-A-W™! for some W.
Given A,W we use a special subroutine {called EQUDI, see Appendix C)

to put 2x2 diagonal block & =W-A:W™! into standard farm and effect
the associated changes in the corresponding rows and columns of the
Schur form. For better accuracy we derive here the analytic
formulae for the transformation, based an W and A. Recall that
all-a22.

d = det(W),
2= aZ2l-wi2.w22 - al2-will.-w2i;
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1

11+ 2/d a12:w11® - a21.w12”

WAw'l = , , d . (10)
a2l-w22 ; al2-w2i all - 2/d

Apply (9) in Section 4.1 to A=WAW™! above to find

u = al2«{wil-w21)(wii+w2il) + a21(w22-w12)«(w22+wi12)

8 = %-tan"1(2z/u)
s = sin(8), c = cos(8), and

- all vi
PAP = . (11)
v2 all

=C S
’
S c

vl = | a21-w22«(w22-wi12:c/s) - a12-w21(w21-wil-c/9)l/d,
v2 = [-a21-w22-(w22+wi12-s/c) + a12-w21(w2i+wii-s/c)l/d

where

P =

Since eigenvalues are preserved under similar transformation, we
must have vi-vZ:=alZ-a2l; thus we may recompute v1 from vZ or
vice versa, depending on which one is srnaller in magnitude.

9. Numerical Tests

We have done extensive testing on rnatrices with various mixtures of
block size. All 3 algorithms perform well in most cases. To investigate
more closely the accuracy of Algorithms 0,1, and 2 under extreme
conditions, we tested them on three sets of matrices: one with huge

B, one with a choice of B so that [det(X)| < [[XlI%, and finally one with
fairly close eigenvalues. These tests performm 2x2 block swaps.

How to measure the “correctness” of the computed output is not so

sasy. Let & be the output matrix PTAP where P is the orthogonal
matrix that accumulates all the transformations that are applied to
A. We believe that the only sensible measures for the accuracy of P

and A are 1) how close is P-PT to the identity matrix? and 2) how
close is PAPT to the original matrix A.
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Thus our measuring parameters are:
1. Ep = lI1-PPT), (12)
2. Ep = A - PAPTI/IIALL (13)

Ep is the orthogonality error in P; E5 is the norm relative error in

PTAP. Out of curiosity we also computed
3. ¢ = Maxile; J, Ali,j)=0) (14)

where ¢; ; = (A - PAPT)(i,j)/A(i,j)I. This is the worst relative error
amang the elements of PAPT.

The third parameters make sense only when A(i,j) z 0, since fill-in
(2ero elements become non-zera) is unavoidable in recovering A from
P and A. We should point out that ¢ is too exigent a measure for the
accuracy of P and A. It is unreascnable to demand high relative

accuracy for tiny elements in PAPT. Nevertheless we found ¢ helpful
in showing subtle differences between good swapping programs. The
following results were obtained on a SUN 3/50. P and A are
computed solely in single precision arithmetic. However, the error
measures are computed in double precision. Only three digits are
displayed for the error measures in order to keep the display clean.

We have also run our program on a YAX/750 with similar results.

The Fortran program for Algorithm 0 is Stewart's EXCHNG, the
Fortrap program for Algorithm 1 and 2 are written according to
section 43 and 44 with special formula for the diagonal blocks
described in section 4.5. See the listing in Appendix C.

The roundoff unit is 272> ~ 1192E-7 in the following numerical
results.

Test matrix | with parameter v (large B)

2 -87 -20000% 100007 |

S 2 -20000r -10000+t
AlT) =

0 0 1 -11

o 0 37 1
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T Algorithm ¢ Ea Ep
see (14) see (13) see (12)
1 0 211e-3 1456  166e-6
1 256e-6 162e-7  196e-7
2 2746 3577 341e-7
2°3 0 125e-4 489e-7 10Se-6
1 1 66e-6 127e-7 162e-7
2 870e-6  4.15e-7  4.79e-7
27 0 518e-5 469e-7  697e-7
1 190e-6  2.19e-7  232e-7
2 8.34e-7 193e-7 2.14e-7

- an et SR an W Y NE GE G G R Gk ER b W N SR Ve SR SR R SR G R GE TP Gn GL L on D Gh R SR G GL GE L R AP WA W @D e e B @ e o
e TR T am Ah M Gh Gh G E h e G D W W TS TE Gh G Gk Gk Gk Gn W THE GR GD L Gh Gp e G A Sh R L @ MR W T T s W W o @ W

P and & = PTAP from algorithm 2 when A=A(1).

-5738761 6294.046
-3106.521 -7298.501 |’
-9999731E-1 7337808E-3 -1655211E-5 7307688E-6 |
-7337804E-3 -9.999732E-1 -1610292E-5 -1.307002E-4

Ps -1675308E-5 -1423457E-5 9999108E-1 -1334777E-2 |
6.125366E-6 -1309519E-4 1334783E-2 9999109E-1 |
1000000 -8598243 2001192 -10194.38 |

% . 4733524 1000000 1998538 9807223

0000000 0000000 2000000 -1101783
0000000 0000000 3948143 2.000000 |

Test matrix I with parameter t (ldet(X) < Xl

-3 -87 3576 48887
9 -3 -8871 -1440<
0 0 17 -45
0 0 37 17

Alr) =
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T Algorithm e Ea Ep
see (14)  see (13)  see (12)
1 0 332e-5 174e7  442e7
1 199¢-3 1936 639e6
2 1525 218e7  2.10e7
273 0 1375 2657  494e-7
1 241e-4 909e-7 1856
2 150e-6  196e-7  5.12e-7
27® 0 754e-6  616e-7  569e-7
1 794e-7  199e-7  260e-7
2 168e-6  212e-7  749e-7

s L n A e e A Gn WD WS L G e S em D h e G G MM MR R AR D G Eh TE SR Sm s AR dn AE AR AN ek SN G AR NE M E e W e o
N R UL M em T em G G Gk W e e Gk T R T G WE e T Th G GF W UE e SR R R Sh W MR MR P G ko un W A W oA W e e =

P and A = PTAP from algorithm 2 when A=A(1).

9179044 -1242202

-9375406 1985028 ]’
-9907388E-1 -1318285E~1 3216357E-2 -4.818546E-3 |
1356281E-1 -9.640296E-1 2282810E-1 1.181298E-2

P7| 4287299E-3 1861262E-1 8.120847E-1 -5530479E-1 |
-4807638E-3 1364735E-1 5360752E-1 8330517E-1 |
1700000 -1432443 -5568.100 -2230.135 |

5| 1162349 1700000 9136795 8240479

0000000 0000000 -3.000000 -2368775
0000000 0000000 1836391 -3.000000 |

Test matrix III with parameter t (close eigenvalues)
7001 -87 394t 2221 |
5 7001 -122t -3b7
0 0 701 -117567|
0 0 37 701

AlT) =
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T Algorithm e Ea Ep

see (14)  see (13)  see (12)

1 0 585¢-6 873e-7  B834e7

1 350e-7 291e7 2677

2 469e-7 1197  248e-7

273 0 612¢-6  773e7  130e-6

1 6.12e-7 2.78e-7 2.36e-7

2 6.18e-7 268e-7  803e-7

276 0 461e-5 649e-7  789e-7

1 320e-6  445¢-7  405e-7

2 283e-6  345¢7 501e7

s G s WSS e S TR Gh W Gh G Gk GE Gs L AR e ML G ML G YR GRS R G R AF R P L GL 4p b W M TR WD M G W W b W M W W e
G Uh Gn W wh er uR W Sk SR Gk Mk un W G M G AL G Gn SP Sh L W TR W T AR YD G S WR e L YR Gh A L e Nh G G W SR W S m W m W e

P and & = PTAP from algorithm 2 when A= A(1).

1258173 -2869.060
1218421 1770267 |~
-1.000000E+0 -1293420E-4 6833661E-5 -4.892822E-5 |
1293046E-4 -9999997E-1 1.150727E-4 S5055802E-4

i 6830178E-5 1.152873E-4 1000000E+0 4.074871E-4
-4902146E-5 5055270E-4 -4.076063E-4 9999997E-1 |
7010000 -87.01575 -39.38432 -22.17753 |

x- 4999070 7.010000 12.19859 36.00098

0000000 0.000000 7000999 -1175932
0000000 0.000000 3699180 7.000999 |

6. Conclusion

The test results in section 5 reveal that all three aglorithms are
acceptable since Norm error measures E, are tiny. Algorithm 1 and 2
have the advantage of keeping the real eigenvalues on the diagonals
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at all times. The finer measure ¢ indicates that Algorithm 0 and
Algorithm 1 in certain cases are inferior to Algorithm 2 but in other
tests cases the roles of Algorithm 1 and 2 are reversed.

We find no reason to reject any of the methods and can give no

perference.
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Appendix A. Solving AjX - XA, = B

When A; and A are in standard form the inverse of the coefficient
matrix can be expressed quite succinctly and safely. Let

«x P
A =|.' '] i=12, ¥ <oO.
i % i i

¥
i

Let §=«1-«3, then the equations for solving X may be written as

[ x11] [ b11]

C 8l x12 b12

(1) c x = b; x= , b=
L x21 b21
| X22] b22
where

= 2
28b2 5 ’ﬁ2"2

§ ¥ s2ep ¥ -25¢
2) c=l 2], c? 22 2

Multiply (1) as indicated in order to make the coefficient matrix block

diagonal,
Cz- B Y 0 c -p1
(3 S S x =] (1:2.1,.
0 C*- 8.¥, 12
Now let
T 2b%
- - -1 2
g = (2 p¥) " = l 25, ]/d
where
- 2 - - 2_
(4) T =8+ 6212 51"1' d==x (2852)(28’(2) » 0,

and premultiply (3) by diag(G,G) to find

ao C -81
] 2
0@

X =
'(112 C
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$ -’(2 -p1 1]
cGollB, & O -p
(5) = 0 G . -¥ 0 s -x .b’
0 ¥, -8B, 5
né ¥, -t ~28¥2b1
- 1 P, né '2851"2 ~TP B
dj -v¢ -28\'112 nd ¥ ’
-25¥ 152 -ﬂl 4,52 nd
whers
N o= T-2082 = 82-(py¥y+po¥2) > O,
g = 282-1 = 82+ (By¥g-po¥o) .

Inevitably (5) is Cramer’s rule and d = det(A;el - Ie Ay) so that d=0
if and only «q = «3, B1¥1 = B2¥2.

Remark. One step of iteration refinement may be needed if the
structure matrix is ill-conditioned. We form the residual matrix
R=B-(A1X-XA5). If R is large relative to B, then using (5) again to
solve for the correction matrix E, from A1E,-E A7 = R and refine X
by subtracting E, from X.
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Appendix B. Representing reflectors in form (6) of section 3

From (6) in section 3 we have
R TR R

H [ ]

Thus to represent the reflector(s) in 44 we need only to compute C
and C; using the formulae above. We skip the details of algebric
manipulations and give the results below.

case 1x1:Cy = (sx), C; = (-sx), where sx = sign(x11)- /1+x11%

case 1x2: C; = (sx), and

-xi1 |
C = 1 x1i1 det(C ) = sx
- 12 - ————— - —— ’ ’
2 X 3 3 2

where
s = -sign(x12)- /1+x11%+x122 ,
if -x12/sx ¢ 05, then u3 = x12+sx; else u3 = (1+x112)/(sx-x12).

case 2x1: C; = (sx), and

x21 g1
c, = | wt ul |, detC) = =,
i x21

where
s = dgn(xli)-ﬁ*x112+x212 ,
if x11/3x ¢ 05, then ul = sx - x11; else ul = (1+x21%)/(sx+x11) .

case 2x2:
x11 - SL-X2Z g5 X21
c = ui-v2 ul-v2
1 x21 - ¥3 x22-L |
ve v2
c =™ Y| gerc) = qerc)
= , det = det = sx'sy,
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where sx,ul,y1,y3,y2,3y,v2 are defined by
sx = sign(x11). /1+x112+x212 ,
If x11/sx < 05, then ul = sx-x11; else ul=(1+x212)/(sx+x11),
vl = -(x11-x12+x21-x22)/sx
y3 = (x12-ul-x21-x22)/(ul-sx),
v2 = -x22-x21-y3,
sy = -sign(y2)- f1+y22+y32 |
if -y2/sy < 0.5, then v2 = sy+y2; else v2 = (1+y32)/(sy-y2).
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Appendix C. Listing of Fortran Subroutines

Subroutine SWAPB (Algorithm 1)

Subroutine SWAPB (Algorithm 2)

Subroutine HOUSE (used in Algorithm 2's SWAPB)
Subroutine EQUDI

Subroutine TXMXT




OO0

g NeNe] OO0

SUBROUT INE SHAPBCT,P,N,J1,N1,N2,NT,NP)

REAL T(NT,N),P(NP,N)

INTEGER NP,NT,N,J1,N1,N2
GIVEN T IN SCHUR FORM SUAPB SHAPS RDJACENT DIAGONAL BLOCKS Ti
AND T2 IN MATRIX T BEGINNING IN ROM J1 BY ORTHOGONAL SIMILARITY
TRANSFORMAT IONS THAT PRESERVES THE SCHUR FORM OF T. THE
DIMENSION OF BLOCK T1 1S N1 BY N1 AMD T2 IS N2 BY N2. THE
PARAMETERS IN THE CALLING SEQUENCE ARE (STARRED PRRAMETERS ARE
ALTERED BY THE SUBROUTINE)

T THE MATRIX WHOSE BLOCKS ARE BEING SWAPPED.
-p THE ARRRY INTO WHICH THE TRANSFORMAT IONS
fRE TO BE ACCUMALATED.

N THE ORDER OF THE MRTRIX T.

J1 THE POSITION OF THE BLOCKS.

Nt SIZE OF THE FIRST BLOCK.

N2 SIZE OF THE SECOMD BLOCK.

NT THE FIRST DIMENSION OF THE ARRRY T.

NP THE FIRST DIMENSION OF THE ARRARY P.
METHOO :

ALCORITHM 1 OF "PROGRAMS TO SWAP DIAGONAL BLOCKS® WITH
SPECIAL FORMULA FOR THE OIAGONAL BLOCKS

SUBPROGRAMS :
TXXT, EQUDI

INTERNAL VARIABLES:

REAL D,R,S,Y,2,U1,U2,U3,U1,U2,U3,V1,V2,Y3,v4,H1,H2, K3, N4

REAL T11,722,733

REAL X(2,2),X11,X12,X21,X22

REAL H(2,2),H11,H12,121, W22

REAL U(2,2),U11,U12,U21,U22

REAL R1(2,2),R2(2,2)

EQUIVALENCE <X(1,1),X11),(XC1,2),X12), (X(2, 1),X21), (X(2,2),X22)
EQUIVALENCE (HC1, 1),H11), CHCT,2), H12), CHC2, 1), H21), (H(2,2), W22)
EQUIVALENCE (U(1, 1),U11),(UCT,2),U12), (U(2, 13,0213, (U(2, 25, U22)
INTEGER 12, 1,K,J1,J2,J3, J4

SOLVE X FOR [I -X] [RT 0) [1 XJ = [A1 T121 BY CALLING TXXT
0 1110 A2]1 10 1) (0 ARA2]

CALL TXIXTCT,N,J1,N1,N2,X, 12,NT)
IF 12=0, A1 AND A2 ARE TOO CLOSE TO SWAP

IFC12.€Q.0) GOTO SO

Kedf 141 14422

J2 = Ji+1

J3 = JieN1

M4 = U341

IF(N1.EQ.2) THEN
RICT, 1=TCJ1,J1)
RICT,2)=TCJ1,J2)
A1C2, 1X=T(J2,J1)
R1C2,2)=T(J2,J2)




F.........................-.-.--.------II-------LA,

BoIF
IF(N2.EQ.2) THEN
R2C1, 15=T(J3, 135
R2C1,2)=T (U3, 04)
R2(2, 1)=T(J4, J3)
R2(€2,2)=TC(J4, 04
BOIF
GOTC €10,20,30,40) , K
c
CNi=1, N2=1 : H=( S 01 [ -XI1 11, S=10/S0RTCI+X11%%2)
c t 08101 Xt11
c

10 S=1.0/SQRT(1.0+X11*X11)
c

C PERFORN H*T*HT
c

T11 = TCJ1,J1)
T2 = T¢J2,J2)
DO 12 I=J1,N
H1 = TCJ1, 1)
W2 = TCJ2, 1)
Vi & SR(-X11901 + H2)
Y2 = S*C W1 + X11%2)
TG, 1) = ¥
TCU2,1) = ¥2
12 CONT I MUE
00 14 (=1,J2
Hl = T(1,J")
W2 = TC,J2)
V1 = SR(=X118d1 + W2)
Y2 = S%CKH1 + X11%42)
TC,J1) = vy
TC,2) = ¥2
14 CONT | NUE
c
C PERFORN PeHT
c
DO 16 I=1,N
H1 = PCL,U1)
H2 = PCI,J2)
Y1 o= GR(-X11%41 + W2)
Y2 = S*C W1 + X11%82)
PCI,J1) = ¥1
PCI,d2) = ¥2
16 CONT INUE
c
C SWAP DIRGONAL ELEMENTS
c
T(J2,J2>=T 11
T, J1=T22
GOTO SO

1
u2
0

orer-x11 1+ 0)
0oltr-x12 0 1)
110 1t X11X12]

Ni=i, N2=2 : H =

— N gy
oBo

v

Bﬁﬂﬂﬂﬂ

S = 1+X11%X 11




Y = Xi2%X12

VU1li= SORT(S)

V22= SOQRT(1.0+Y/S)
V21= O

Vi2s X11®%(X12V11)
Ul = 1.0/(SQRT(S+Y))
Ut = 1.0/V11

u3 = {.0nv22

U2 = =(X11*X12%33/5
T = T(J1,J1)

8 o= U2

c
C PERFORM HeT#HT
c
00 22 I=J1,N
Hi = TCJ1, 1)
M2 = TCJ2, 1)
M3 = TCJ3, 1)
V1= X110+ W2
¥2 = -X12%{1 + K3
Y3 = W1+ XTI%2 + X12%43
TCJ1, 1) = Uteyy
TCJ2, 1) = UZ%Y 1+U3*Y2
T(J3,1) = Uiy
2 CONT INUE
D0 24 I=1,J3
Hi = TCI,J1)
N2 = TCI,J2)
M3 = TCI,J3)
Vi = =XTI%1 + W2
Y2 = -X12%1 + K3
v3 = Wi+ X182 + X12643
T¢I, 1) = Uiwyy
TC1,J2) = U2*Y 14U3*2
TC,J8) = U1sy3
24 CONT INUE
c
C PERFORM PeHT
c

Hn

D0 26 I=1,N
Ht = PC1,J1)
W2 = PQ1,J2)
H3 = PCI,J3)
Y1 =Xtimlt + W2
Y2 = =X12%41 + W3
Y3 = W1 + X11%2 + X12%43
PCl,J1) = U1y
P(1,J2) = U2y 14U3*y2
PCl,J3) = Y1sy3
CONT | NUE

T(J3,J43) = Ti1; CALL EQUDI WITH A2¢2,2), V<2,2)> TO GET A2'

0008

T¢J3,43) = T1
CALL EQUDICT,P,N,J1,A2,V,U11%U22, NT,NP)
GOTO 50




SOOﬂO

(v
N1=2, N2=1 : H=(0
(0

S = 14X11%X11

¥ = X21%x21

H1l= SORAT(S)

H22= SORT(14¥/S)
Hi2= O

21= X11%(X21/M11)
Ut = 1.0/¢SORT(S+Y))
Vi = 1.0/M11

W = 1.0/M22

U2 = ~(X118X2193)/6
W2i= W21

0 = Wit

Wit W22

H22= D

TX= T¢J3,43)

c
C PERFORM H*T™HT
c

Oﬂﬂg

00 32 (=J1,N
Hi = TG, 1)
2 = TCJ2, 1)
M3 = TCJ3, 1)

=X11 -X21

1
0

Y1 = =XM1 - X218 + W8

v2 = W1 + X11M3
Y3 = W2 + X21%3
TCIY, 1) = Utsyy
TCJ2,1) = Visy2

T(3, 1) = U2%Y24U3¥Y3

CONT INUE

DO 34 [=1,U3
M1 = TC1,d1)
M2 = T(I,J2)
W3 =T,
Y1
Y2 = W1 + X113
Y3 = 2 + X213
T, 1) = Uteyy
TC,J2) = Yisy2

TC1,J3) = U2ey24Uaey3

CONT | MUE

PERFORH P*HT

00 36 I=1,N
M1 = PCL,J1)
W2 = PCl,J2)
H3 = P(I,J8)

X111 - X212 + W3

Yi= =X11"1 ~ X21%82 + W3

¥2 = W1 + X11%43
V3 = W2 4+ X21%43
PCI,J1) = UIeyy
PCI,J2) = UIv2

PCL,J3) = U29Y2+U3%y3

0
1

11
X11]
X21]




CONT | NUE
TCJ1,J1) = T33; CALL EQUD! WITH A1€2,2), H(2,2) TO GET A1°

0068

TCJ1,J1) = T3
CALL EQUDICT,P,N,J2,R1,N, N1 19822, NT, NP>

o060

{ 0
Ni=2, N222 : H= [ U2 W
to o
(o 0

8000
g
m

D = X11%X22-X12%X21

S = 14X11%X11

D = X22+X22+0*0

Z = X12%X12

R = X21%X21

Y = 842

W11 = SORT(Y)

N22 = SQRT(1.0+<D+RI/Y)
Wiz = 0.0

21 = (X11eX21+X12%X22)Al 11
Y = S+

Uil = SQRTCY)

V22 = SORT(1.0+(D+20/¥?
V21 = 0.0

V12 = (X11*X12+X21*X22) V11
ut 1.0AM11

<) 1.0V22
“Ui2/¢U11%22)
1.0/

1.022

V2 = 217118225

U1

3]

DO 42 1=J1,N
H1 = T, 1)
M2 = T2, 1)
K3 = T3, 1)
N4 = TCU4, 1)
v: ~XTIRL - X21%82 + W3
~X12%1 - X22%2 + W4
93= N1 + X113 + X12%44
V4 = 12 + X21%3 + X22%4
TCJ1, 1) = Uteyy
TCJ2,1) = U2*Y1 + US*Y2
TCJ3, 1) = Uiey3
T(U4, 1) = U2ey3 + Uaev4
42 CONT | NUE
DO 44 (=1,U4




f

Mt = TCI,J1)

W2 = TC,J42)
43 = T¢I, J3)
N4 = TCI,04)
Vi = =X1181 - X219 + W3
Y2 = -X12%M1 - X222 + WA
V3= W1+ X119 + X12%4
Ve = W2 + X21%3 + X22%M4
TCH,J1) = Uisyy
TC1,J2) = U2V + U3%2
TC1,J3) = UIwy3
TC1,08) = U2Y3 + U3eve

4“ CONT | NUE

c

c

c

PERFORN PoHT

DO 46 I=1,N
W1 = PCI,J10
2 = PCI,d2)
M3 = PCI,d3)
He = PCI,U4)
Vi = =X1181 = X212 + W3
Y2 = ~X12%H1 - X292 + W4
V3= Wi+ X103 + X129
V4 = M2 + X21%3 + X22%i4
PCL,J1) = UiwYi
PCI,J2) = U2%1 + US*Y2
PC,U3) = UIsy3
PCI,J4) = U2%Y3 + U3*v4
CONT INUE

CALL EQUD! WITH A1, W TO GET A1*, A2,V TO GET A2’

ﬂﬂﬁs

CALL EQUDICT,P,N,J1,A2,U, V11822, NT,NP)
CALL EQUDICT,P,N,J3,A1,H, 119422, NT, NP>
RETURN

8o

g




OO0 OOOODOOOOOOO0DOO0O

OO0 OO0

SUBROUT INE SWAPBCT, P, N, J1,N1,N2,NT, )
REAL TCNT,N),P(NP,N)
INTEGER NP,NT,N,J1,N1,N2

GIVEN T IN SCHUR FORM SUAPB SWAPS RDJACENT DIAGONAL BLOCKS T1
AND T2 IN MATRIX T BEGINNING IN ROW J1 BY ORTHOOONAL SINMILARITY
TRANSFORMATIONS THAT PRESERVES THE SCHUR FORM OF T. THE
DIMENSION OF BLOCK T1 IS N1 BY N1 AND T2 IS N2 BY M2.THE
PARAMETERS IN THE CALLING SEQUENCE ARE (STRRRED PARAMETERS RARE
ALTERED BY THE SUBROUTINE)

T THE MATRIX WHOSE BLOCKS ARE BEING SURPPED.
- THE ARARY INTO WHICH THE TRANSFORMATIONS
ARE TO BE ACCIMULATED.

N THE ORDER OF THE MATRIX T.

J1 THE POSITION OF THE BLOCKS.

N1 SIZE OF THE FIRST BLOCK.

N2 SIZE OF THE SECOMD BLOCK.

NT THE FIRST DIMENSION OF THE ARRAY T.

NP THE FIRST DIMENSION OF THE RRRRY P.
METHOD:

ALGORITHM 2 OF "PROGRAMS TO SWAP DIAGONAL BLOCKS™ WITH
SPECIAL FORMULA FOR THE DIAGONAL BLOCKS

SUBPROGRAMS

TOXT, EQUOI

INTERNAL URRIABLES:

REAL X(2,2),UC4),UU(4),D,6,X11,X22,X12,X21,HALF,¥1,Y2,¥3

REAL H(2,2),H11,H12,H21,H22

REAL U(2,2),U11,V12,U21,U22, TENP, T11,122,7133

REAL A1(2,2),A2(2,2)

EQUIVALENCE (X(1, 1),X11), (X(1,2),X12),(X(2, 1),X21),(X(2,2),X22)
EQUIVALENCE CHC1, 1), H11), CHCT,2),H12), (HC2, 1), H21), (H(2,2),H22)
EQUIVALENCE CU(1, 1),U11), (UC1,2),V12), (2, 1),V21), (U(2,2),U22)
INTEGER K

HALF = 0.5

X FOR {1 =X (T1 T12) (1 X1 = (Tt O 1 BY CALLING TXrXT
0 1110 T21(0 11 (0 T2l

CALL TXIXT(T,N,J1,N1,N2,X, 12,NT)

IF 12=0, A1 AND A2 ARE TOO CLOSE TO SHAP

IF(12.EQ.0> GOTD 50

K=H 14N 1442-2

J2 = Ji+d

J3 = JIN1

J4 = JB+1

IFCN1.EQ.2) THEN
AICT, 1=TCJT,J1)
AICE, 2)=TCJT, J2)
A1C2, 1=TCJ2,J01)
A1(2,25=T(J2,J2)

ENDIF




c

D H=i-l*/D, HIXI1 )=

IF(N2.€Q.2) THEN
R(1, 1)=T(J3,J3)
R2C1,25T(J3, J4)
R2(¢2, 1 YT (4, U3)
A2€2,2)=T(J4, 4)

ENDIF

GOTO <10,20,30,40) , K

[ S 1, S=SIONCX11*SQATC 1+X11%62)
t 11 (0]

S= SIOGNCSQRTC1.0+X11%X11),X11)

TI = TCJ1,d1)

T2 = T(2,u2)

UCt) = § - X11

IFCCX11/8). 6T . HALF) UC1) = 1.0/¢S+#X11)

2> = 1

D = U(IMS

CALL HOUSE(T,P,N,J1,U,2,D,NT, NP>

C SHAP DIAGOMAL ELEMENTS

c

TW1,J1) = T22
T(2,42) = T1
6070 S0

PP IX11X12 1 H= (00 S ], S==SIGN(X12)*SQRT( 14X 1 1%424X 12%%2)

Y = 1.0+X119X11

§ = SIGNCSQRT(Y+X12%X12),~X12)
uct) = 1

U2y = X11

U3) = X12 + S

IFCC-X12/8) .GT.HALF) U(3) = Y/(S - X12)
D = U(3MS

U1 = -X19

V22 = -X110(3)

w21 = 1.0

V12 = -X12-1.0/UC3)

T11 = TC1,d1)

CALL HOUSE(T,P,N,J1,U,3,D,NT, NP>

C T¢J3,J3) = T11; CALL EQUDI MWITH R2¢2,2), U(2,2) TO GET A2’

c

OO0
8
N
-
—

TCJ3,03) = Ti
CALL EQUDICT,P,N,J1,R2,V,S,NT,NP)
GOTO S0

: H [-X11] = [ S], S = SIONCX11YSORTC1+X11*X 1 1+X21*X21)

(-x211 = { 01
I 11=10l]

T3 = T(J3,J43>

Y = 1.04X21%X21

S = SIGNCSORTCY+X11#X11),X11)

Uc1) = § - X1

IFCCX11/S).GT . HALF) UCT) = y/(S+X11)




—r

U(C2) = =x21
UC3) =
D = UCIMS
K22 = X21/U¢1)
Hi1 = X21
HI2 = =X1141.0/UC1)
2t =-1.0
CALL HOUSE(T,P,N,J1,U,3,D,NT, NP>
c
C TCJ1,J1) = T33; CALL EQUD! MITH R1(2,2), MH(2,2) TO GET A1’
c
TW1,J1) = 133
CALL EQUDICT,P,N,J2,A1,H,S,NT,NP)
0070 SO
c
C 2,2 : Ht [-X111 = [ §], S = SIGNCX11)*SORTC 14X 119X 1 14X21%X21)
c -X211 = [ O}
c t 11=10]
c { 01=¢(01
c
40 ¥ = 1.0+X21%X21
SX = SIGNCSORT(Y+X11%X11),X11)
UC1) = SX - X1
IFCCX11/8X).GT. HALF ) UC1) = Y(SX+X11)
UC2) = -x21
U3 = 1
D = UC1MSX
CALL HOUSE(T,P,N,J1,U,3,D,NT, NP>
TEP = (T(J4, J1MCI T4, J2 M2 HT (U4, J39U(3))/D
TCJ4,Jd1) = T(J4,J1) ~ TENPHUC 1)
T(J4,J2) = T(M,J2) ~ TEPRUC2)
T¢J4,d3) = TCU4,U3) ~ TENPHUC(3)
Y1 m =X IRX124X21%X22 5 /SX
Y3 = (X12%(1)-X21%X22)/D
V2 = -X22-X21%v3
c
c H2 (Y1) = (Y1) , HERE ¥ = HI®(=X12], S = ~SIGNCY2*SORT( 14Y2%%24y3%#2)
c (v2] = { S} [-x22)
c (v31 = [ 0) t 01
¢ (v4] = ( 1] t 11

¥ = 1.0+v3%3
SY = SIGN(SORT(Y2#Y2+¥),-V2)

WC2) = SY+y2

IF CABSCY2/SY).GT.HALF ) LUC2 )=y /(SY-¥2)
w(3) = v3

WiKe) = 1

G = WUC2)*SY

CALL HOUSE(T,P,N,J2,WJ(2),3,6,NT,NP)

TEMP = (UUC2)*TCJ2, J1HUIUCI MTCUS, J 1 HUIUCA MT (4, J1)) /6
TC2,J1) = TCJ2,41) - TEPRIUC2)

TCI3,J1) = T3, J1) - TEMPHIUC3)

T(J4,J1) = TC4,d1) - TEHPHAICE)

Hi1 = X22 - 1.0/0UC2)

H22 = X11 = (8Y=X22)/CUC 1MI(2))

H1Z = =X124X21/CUCT™UUC2))

H21 = =X214Y3/UC2)

U1t = =5




V22 = -SY

V12 = vi

V21 = 0.0

Y = SX*sy
(¥
C CALL EQUDI MITH A1€2,2), W<2,2> TO GET RY', A2,V TO GET A2'
c

CALL EQUDICT,P,N,J1
CALL EQUDICT,P,N,J3,A1,
RETURN

END

SUBROUT INE HOUSE(T,P,N,J1,U,K,D,NT,NP)>
REAL TCNT,N),PCNP,ND,UCK),D
INTEGER K,J1,N,NT, NP

THIS SUBROUTINE PERFORMS HOUSEHOLDER TRANSFORMATION ON T AND ACCUMULATE
THE TRANSFORMATION IN P
T = (=0T /D)
PCI-UU*/D), WHERE U STANDS FOR THE TRANSPOSE OF U.
THE TMGFGI‘RTICH BEGINS AT T<J1,J1). THE LENGTH OF U IS K.

INTERNAL URRIABLES:
REAL S,ZERO

INTEGER 1,J
ZER0=0.0

,R2,U,Y,NT,NP)
W,¥Y,NT,NP)

OO000O0000O000

c
C ROW MODIF ICAT 0N
c
IF¢D.EQ.ZERD) GOTO 100
00 30 J=Ji,N
S=0.0
DO 10 i=1,K
10 S=G+UCI MT(J1+1-1,4)
$=5/0
DO 20 I=J1,J14K-1
TC,I=TC), JSRUCi=d 1+ 1)
CONT | NUE

COLUMN MODIFICATION

DO 60 I=1,J1+K-1
$=0.0
DO 40 J=1,K
S=SHUCUI T, J1+d=1)
$=5/0
00 50 J=J1,J14K-1
TCH,dmTC, JGMCId 1+ 1)
CONT INUE

3

ACCUMALAT | ON

DO 90 I=1,N
$=0.0
DO 70 J=1,K
S=SHI(IIP(I, J1+d-1)

3




588

$=S/D
DO 80 J=J1,J14K-1
PCL,I=PC, I-S8UCS-J I+ 1D
CONT INUE
RETURN
END




SUBROUT INE EQUD!CT,P,N,J1,A, N, DETH, NT, NP>
RERL TCNT,ND,PCNP,ND,R(2,2),H(2,2),0ETH
INTEGER J1,N,NT,NP

-

IS SUBROUTINE PERFORIMS R UNITARY TRANSFORMATION <A REFLECTION)
TO MAKE THE DIAGONAL ELEMENTS IN W*A*"H"-1 EQUAL AND PUT THE FINAL
RESWLT INT.

=COS(Q> SINKQY 1 U T1t T12 1 [~COSCQY SINCQ> 1 [ Tt11° T12° ]
SINCQY COSCO) 1 [ T21 T22 ) I SINKQ) COSCQ) 1 = 1 T21' T11' ]
THE TRANSFORMATION IS ACCUMULATED IN (POSTMULTIPLED TO)> P. THE
INPUT R MUST HAVE EQUAL DIAGOMAL ELEMENT. HERE DETW IS THE
DETERMINANT OF W.

Lo ol

F7? GENERIC FUNCTIONS: ATAN, COS, SIN
INTERMAL VARIABLES

OO0 OOO0OOOOO0O0O0

INTEGER 1,J,J2
REAL Q,Y,5,C,2,V1,u2, TP, ZERD, ONE, HALF

ALl = ACT, 1)
A12 = AC1,2)
R21 = AC2, 1)
A22 = AC2,2)
M1l = (Y, 1)
H12 = HC1,2)
21 = W2, 1D
H22 = H(2,2)
ONE = 1.0

+ U 0D

HALF = 0.3
ZERQ = 0.0
J2=J 1+
c
C DETERMINE THE ANGLE Q
c
2 = R2TI2RL22 - RIZ* T 1%L21
U = A12%(H11+215%(H11-121) + A2 1% (H22-W12)%(1H22+H12)
IFCU+Z.EQ.2)> THEN
Q = RTANCT. QD
ELSE
Q = HALF*ATANC((Z+2)>/U)
EMDIF
S = SINKQ
C = Cosca»
c
C NEW DIAGONAL BLOCK

c
2=C/S
Ul = ¢ A21%22%(L22-U 12%2 -R12%42 1* (2 1-H 1 1%2) ) /DETH
2 =8/
VU2 = (-2 1%H22% (U224 1242 XA 127902 1* (H2 141 1 1%2) ) /DETH
Z = A12%A21
IF(ABS(U1).GT.ABS(V2)> THEN
vz = 2Vt
ELSE
Ut = 202




ENDIF
c
C RO MODIF |CATION
>
00 10 J=J2+1,N
TEP = -COT(J1,UME5T(U2,))
TCJ2,02=  SPTCJY, JHCHTCU2, J)
T(J1, = TEP
10 CONT INUE
c
C COLUMN MODIF ICAT 0N
c
DO 20 1=1,J1-1
TEP = TC,JIM(-CHTC,J2)%S
TC1,d2)= T, J1S+TCH, J2)oC
T(<,d1)= TEMP
20 CONT INUE
TCJ1,J1) = A1
T¢J1,42) = U1
TCJ2,d1) = U2
1¢J2,J2) = At
c
C ACCUMULAT | ON
c
D0 30 (=t,N
TEP = PCI,J1*(-CP(L,J2)%S
PCI,J20= PCI,J1S+P( |, J23%C
PCH, 1= TEMP
30 CONT INUE
40 RETURN

END




SUBROUT INE TXODXTCT, N, J1,N1,N2, X, 1Z,NT)

REAL TCNT,N),X(2,2)

INTEGER N,NT,J1,N1,N2, 12
IS SUBROUTINE SOLUES FOR N1 BY N2 MATRIX X IN T1%X - X*T2 = T12.
AND T2 BEGIN IN ROWS J1 AND J2 RESPECTIVELY, T12 IS THE UPPER
IANGULAR PART BETHEEN T1 AND T2. THIS PROGRAM ASSUMES THE
IAGONALS OF T1 (T2) ARE EQUAL. THE PARAMETERS IN THE CALLING
QUENCE ARE (STARRED PRRAMETERS ARE ALTERED BY THE SUBROUTIME)

o7 INPUT MATRIX

N THE ORDER OF THE MATRIX T

c J1 THE POSITION OF THE BLOCKS.
N1 SIZE OF THE FIRST BLOCK.
N2
X
|

Re3g2+4

SIZE OF THE SECOND BLOCK.
QUTPUT MATRIX
4 OUTPUT INDICRTOR: 1-X SOLUVED SUCCESSFULLY,
O-OVERFLOW MAY OCCUR.
NT THE FIRST DIMENSION OF THE ARRAY T.

INTERNAL UARIABLES:

OO0

REAL D,DEL,BET1,BET2,GAM1,GAM2,T1, T2, TRU,ETR,PHI ,DSQ
RERL P1,P2,P3,P4,PS,Pt,P?,P8,P9

INTEGER 1,J,K

ZERO=0. 0

12 = 4

INITIALIZE

o000

DO 1 I=1,2
DO 1 J=1,2
1 XC1,J)=ZERD

J2 = J1+N1

DEL=T(J1,J1)-T(J2,J2)

B11=T(J1,J2)

IFCN1.EQ.2) THEN
JIPY = Ji+1
BET1 = TCJ1,J1P1)
GAM1 = TCJIPY,J1)
B21 = TCJIP1,d2)

ENDIF

IF(N2.EQ.2) THEN
J2P1 = J2+1
BET2 = T(J2,J2P1)
GRM2 = TCJ2P1,J2)
BI12 = T(J1,u2P1)
IFCN1.EQ.2) B22=TCJIP1,J2P1)

ENDIF

Kot 1444 1 +142-2

GOTO ¢10,20,30,40) , K

c
C 1BY I: APHI®X - X*APH2 = B11
c
10 IF(DEL .EQ.ZERO) THEN
1Z=0
ELSE
XC1,1> = B11/DEL




Bﬁnﬂﬂ 30(’)00

80(‘)00

2BY 1

ENDIF
6070 S0

1 BY 2: APHI®IX11 X12) - (X1t X12)*[APH2 BET2] = [B11 B12]

(GRI2 APH2)

0 = DEL*OEL - BET2"GA2
{F(D.EQ.ZERO) THEN

12=0
ELSE
X¢1,1) = (DEL *811 + GAM2¥%812)/D
X(1,2> = (BET2*B11 + DEL *B812)/D
ENDIF
GOTO SO

(APH1 BET11*{X11] - (X11]*APH2 = (B11]
(GAM1 APH11 (X211  [X21) B21]

D = DEL*DEL - BET 1%GAM!
IF(D.EQ.ZERO) THEN

i2=0
ELSE
XC1,1) = ¢ DEL *B1! - BET1*B21)/D
X€2,1) = (-GAM1*B11 + DEL *B21)/D
ENDIF
60T0 50

[APH1 BET1J®[X11 X12) - IX11 X12)*IAPH2 BET2) = [B11 B12)
[GAM1 APH1) [X21 X22] (X2t X22) [GAM2 APH2]  [B21 B221

DSQ = DEL*DEL

Ti = BET1%GAMI1

T2 = BET2%GAM2

TAU = 0SQ + (T2 - T1)

0 = TATAU - 40S(*T2
IFCD.EQ.ZERQ) THEN

12=20
ELSE
ETR = OSQ - (T1+T2)
PHI = DSQ + (T1-T2)
T2 = -(DEL+DEL)
T1 = T2*BET!
T2 = T2*GAM1
P1 = ETA*OEL
P2 = PHI*GAM2
P3 = -TAU*BET!
P4 = TI1*GAM2
PS = PHI®BET2
P6 = TI*BET2
P? = -TAUSGAM!
P8 = T2*GAM2
P9 T2#BET2

- XK1, 1) = (P1*B1 14P2%8 12+P3%B2 14+P4*B22) /D

XC1,2) = (PS*B114P 1%B 124P6*B2 1+P3*822) /D
X(2,1) = (P7*B11+PE*B 124P 1*B2 14P2*B22)/D
X(2,2) = (PO*B 1 1+P7*B 12+P5*B2 1+P 1%822) /D




cC
cc
cC

8888

COMPUTE RESIDUAL

Rt1 = B11 - (DEL*X(1, t >-0RM2*X (1,2 »+BET 1*X(2, 1))
R2 = B12 - (-BET2*X(1, 1 +DEL*X(1,2+BET 1*X(2,2))
R3 = B21 - (GAM1*X( 1, 1 )+DEL*X(2, 1 )~GAM2*X(2,2))
R4 = B22 - (GAM1*X(1,2)-BET2*X(2, 1)+DEL*X(2,2))

PERFORM ONE ITERATION IF R* 1S NOT SHALL COMPARED TO B*

T1 = ABS(B11)>+ABS(B12 »*ABS(B 13 >ABS(B 14)
T2 = 0.0625*(ABS(R1X+ABS(R2 #*ABS(R3I »+ABS(R4))
IF(T1+T2.ME. T1> THEM

XC1, 10 = XC1, 1) + (PI*R14P2*RZ+PI*RIH+P4*R4 ) /D

XC1,2) = X(1,2) + (PS*R14P 1%R2+PE*RI+PIR4 ) /D
XC2,1) = X(2,1) + (PP*R 1+PE¥R24P 19RA3+P2%4 ) /D
X(2,2) = X(2,2) + (PO*R1+P7*=R24PS*R3+P 1%R4 ) /D
BOIF
ENDIF
RETURN
END
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